3x^2-8x-1625=0

Simple and best practice solution for 3x^2-8x-1625=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-8x-1625=0 equation:



3x^2-8x-1625=0
a = 3; b = -8; c = -1625;
Δ = b2-4ac
Δ = -82-4·3·(-1625)
Δ = 19564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19564}=\sqrt{4*4891}=\sqrt{4}*\sqrt{4891}=2\sqrt{4891}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{4891}}{2*3}=\frac{8-2\sqrt{4891}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{4891}}{2*3}=\frac{8+2\sqrt{4891}}{6} $

See similar equations:

| X-(.10x)=85 | | 4-7n=-8n-4+2 | | 17a+3(a-2)=14 | | (2,5)m=5 | | (x-20)+(2x-132)+(.5x+10)=180 | | x+5x+4x-14=180 | | (19x+13)+(6x)=(28x-2) | | X+.10x=75 | | 16x+-17=7x+14 | | 2n-1=7.8 | | X+.10x=85 | | (23x+9)+(8x)=(34x-3) | | (34x+6)+(10x)=(47x-3) | | (34x+6)+(47x-3)=10x | | 7k-(2-4)=0 | | (x-10)+(2x-67)+(.5x+5)=180 | | (x-10)+(2x-67)+((1/2x)+5)=180 | | 195.83d+447.2d^2-82.58=0 | | 150.55d+335.4d^2-39.846=0 | | (x-22)+(2x-54)+(1/2x+11)=180 | | -2(x+8)=28 | | 3/4p-4=23 | | 5.3t=-15.9 | | (x-22)+(2x-54)+(.5+11)=180 | | 117.77d+335.4d^2-39.846=0 | | x+5x+4x-3=180 | | 1/5(a+10)=-1 | | (3x+55)=(8x+5) | | (x+4)+(4x-29)=180 | | 64=(4^5x)*16^x^2 | | 11/6y-13=-2 | | -3x^2+15x^2-48=0 |

Equations solver categories